Change of numéraire (Cont)

Math 622

March 31, 2014

1 The exchange rate

Recall the exchange rate model. There is asset price S(t), foreign exchange rate Q(t), domestic money market rate R(t) and foreign money market rate $R^{f}(t)$. Recall

$$N^{f}(t) = \exp\{\int_{0}^{t} R^{f}(u) \, du\} Q(t)$$
(1)

is the dollar value of one unit of the foreign money market account. The risk-neutral model when prices are in dollars is

$$dS(t) = R(t)S(t) dt + \sigma_1(t)S(t) d\widetilde{W}_1(t)$$

$$dN^f(t) = R(t)N^f(t) dt + N^f(t)\sigma_2(t) \left[\rho(t) d\widetilde{W}_1(t) + \sqrt{1 - \rho^2(t)} d\widetilde{W}_2(t)\right]$$
(2)

The risk-neutral measure $\widetilde{\mathbf{P}}^{(N^f)}$ when prices are denominated using N^f as numéraire is given in Shreve, page 386, equation (9.3.17) and in the previous set of lecture notes. Here, we make some remarks concerning the exchange rate process Q(t).

1.1 The exchange rate under the domestic risk-neutral measure

It follows from equations (1), (2) that

$$dQ(t) = [R(t) - R_f(t)] Q(t) dt + Q(t)\sigma_2(t) \left[\rho(t) d\widetilde{W}_1(t) + \sqrt{1 - \rho^2(t)} d\widetilde{W}_2(t)\right]$$
(3)

When dealing with Q alone it is convenient to write this in a simpler form. Define

$$\widetilde{W}_3(t) = \int_0^t \left[\rho(t) \, d\widetilde{W}_1(t) + \sqrt{1 - \rho^2(t)} \, d\widetilde{W}_2(t) \right].$$

Observe that

$$[d\widetilde{W}_3(t)]^2 = \left[\rho(t) \, d\widetilde{W}_1(t) + \sqrt{1 - \rho^2(t)} \, d\widetilde{W}_2(t)\right]^2$$
$$= \rho^2(t) \, dt + (1 - \rho^2(t)) \, dt = dt.$$

Then by Itô's rule,

$$\widetilde{W}_3^2(t) = \int_0^t \widetilde{W}_3(u) \left[\rho(t) \, d\widetilde{W}_1(t) + \sqrt{1 - \rho^2(t)} \, d\widetilde{W}_2(t) \right] + t.$$

Hence $\widetilde{W}_3^2(t) - t$ is a martingale. $\widetilde{W}_3(t)$ is also a continuous martingale starting at 0, and so Lévy's theorem implies that $\widetilde{W}_3(t)$ is itself a Brownian motion. Using \widetilde{W}_3 ,

$$dQ(t) = [R(t) - R_f(t)] Q(t) dt + \sigma_2(t)Q(t) d\widetilde{W}_3(t).$$
(4)

Remark: The foreign exchange rate behaves exactly like a risky asset that pays dividents at rate $R^{f}(t)$. Equation (4) is the same as equation (5.5.6) in Shreve for a dividend-paying asset if A(t) in that equation is replaced by $R^{f}(t)$.

1.2 Black-Scholes formula for a Call option on the exchange rate

Let $\sigma_2(t) = \sigma_2$ be constant, and also let R(t) = r and $R^f(t) = r^f$ be constant. Then equation (4) becomes

$$dQ(t) = \left[r - r^f\right] Q(t) dt + \sigma_2 Q(t) d\widetilde{W}_3(t).$$
(5)

The solution to this equation is

$$Q(t) = Q(0) \exp\{\sigma_2 \widetilde{W}_3(t) + (r - r^f - \frac{1}{2}\sigma^2)t\}.$$
 (6)

We can look at Q(t) (from a computational point of view) as the Black-Scholes price of an asset following the geometric Brownian motion model, when the volatility is σ_2 and the risk free rate is $r^f - r$.

The fact that Q(t) is a classical Black-Scholes price gives immediate formulas for options on the exchange rate in the constant coefficient case, which we will develop below.

Suppose that the risk free rate is r and under \tilde{P} , a stock S_t has dynamics:

$$dS_t = rS_t dt + \sigma S_t d\tilde{W}_t.$$

Let $C(T - t, x, K, r, \sigma)$ the price of at time t of a European call on S with strike K, conditioned on $S_t = x$. That is

$$C(T - t, x, K, r, \sigma) = \tilde{E} \Big(e^{-r(T-t)} (S_T - K)^+ \Big| S_t = x \Big).$$

Then the Black-Scholes formula for $C(T - t, x, K, r, \sigma)$ is

$$C(T-t, x, K, r, \sigma) = e^{-r(T-t)} \tilde{E} \left[\left(x e^{\sigma \widetilde{W}(T-t)) + (r-\sigma^2/2)(T-t)} - K \right)^+ \right]$$

$$= x N \left(\frac{\ln(x/K) + \left(r + \frac{\sigma^2}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \right)$$

$$- K e^{-r(T-t)} N \left(\frac{\ln(x/K) + \left(r - \frac{\sigma^2}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \right)$$

Consider now a European call option on Q(T) at strike K, for the model of (6). This can also be looked at as a call option with strike K on a unit of foreign currency, quoted in domestic currency.

According to risk-neutral pricing, the value of this option at time t is

$$V(t) = e^{-r(T-t)} \tilde{E} \left[(Q(T) - K)^{+} \mid \mathcal{F}(t) \right]$$

= $e^{-r^{f}t} e^{-(r-r^{f})(T-t)} \tilde{E} \left[(Q(T) - K)^{+} \mid Q(t) \right]$

But evaluating $e^{-(r-r^f)(T-t)}\tilde{E}\left[(Q(T)-K)^+ \mid Q(t)\right]$ is exactly the same as evaluating the price of a European call when the risk free rate is $r-r^f$ and the volatility is σ_2 . Therefore,

$$V(t) = e^{-r^{f}t}C(T - t, Q(t), K, r - r^{f}, \sigma_{2}).$$

This is called the Garman-Kohlhagen formula. You can also recover this formula from the formula (5.5.12) in Shreve for the price of a call on dividend-paying asset. Just replace a in this formula by r^{f} .

1.3 The exchange rate from the foreign currency viewpoint

Starting with the model (1)-(2), suppose we use the foreign currency money market $N^{f}(t)$ as the numéraire. In the previous lecture we found that

$$\widetilde{W}^{(N^f)}(t) = (\widetilde{W}_1(t) - \int_0^t \sigma_2(u)\rho(u) \, du, \widetilde{W}_2(t) - \int_0^t \sigma_2(u)\sqrt{1 - \rho^2(u)} \, du)$$

is a Brownian motion under $\widetilde{\mathbf{P}}^{(N^f)}$ and we showed

$$dS^{(N^f)}(t) = S^{(N^f)}(t) \left[\left(\sigma_1(t) - \sigma_2(u)\rho(u) \right) d\widetilde{W}_1^{(N^f)}(t) - \sigma_2(t)\sqrt{1 - \rho^2(t)} \, d\widetilde{W}_2^{(N^f)}(t) \right]$$

To completely describe the model from the viewpoint of the foreign currency we should also look at the dollar to foreign currency exchange rate 1/Q(t), which is the value of one dollar in units of the foreign currency. The equation for this should have a form symmetrical to the equation (5) for Q(t) when units are in dollars. Indeed,

$$d\left[\frac{1}{Q(t)}\right] = \left[R^{f}(t) - R(t)\right] \frac{1}{Q(t)} dt - \sigma_{2}(t) \frac{1}{Q(t)} \left[\rho(u) \, d\widetilde{W}_{1}^{(N^{f})}(t) + \sqrt{1 - \rho^{2}(t)} \, d\widetilde{W}_{2}^{(N^{f})}(t)\right].$$
(7)

This may be verified from Itô's rule, but one can see why it must be correct by the following reasoning. From the perspective of numéraire N^f , $R^f(t)$ is the domestic risk free rate and R(t) is the domestic rate, so, where $R(t) - R^f(t)$ appears in (4), $R^f(t) - R(t)$ appears in (7). The volatility terms are essentially the same because the same stochastic fluctuation is obviously driving both Q(t) and 1/Q(t). To explain why σ_2 appears in (4) but $-\sigma_2$ appears in (7) just note that 1/Q(t) goes down when Q goes up and vice-versa.

Concerning this topic, the student should read section 9.3.4 on Siegel's paradox (which is not really a paradox, but arises from a misunderstanding of the correct numéraire to use in interpreting a model.)

2 Zero coupon bonds as numéraire

In this section we assume given a risk-neutral model with a stochastic interest rate process $R(t), t \ge 0$.

2.1 Zero-coupon bonds

Bonds are financial instruments that promise fixed payoffs. Most bonds provide periodic payments called coupons and then a final payment consisting of a coupon and a lump sum called the *principal* or *face value*. A zero-coupon bond pays out only at the terminal time. We let B(t,T) denote the price at time $t \leq T$ of a zero-coupon bond that pays \$1 at time T. Given a risk-neutral model defined by a probability measure $\tilde{\mathbf{P}}$, the no-arbitrage principle demands that D(t)B(t,T) be a martingale in t up to time T. Since B(T,T) = 1, it follows that

$$B(t,T) = \frac{\tilde{E}[D(T)B(T,T) \mid \mathcal{F}(t)]}{D(t)} = \frac{\tilde{E}[D(T) \mid \mathcal{F}(t)]}{D(t)} = \frac{\tilde{E}\left[e^{-\int_0^T R(u) \, du} \mid \mathcal{F}(t)\right]}{e^{\int_0^t R(u) \, du}}.$$
 (8)

Hence,

$$B(t,T) = \tilde{E}\left[e^{-\int_t^T R(u) \, du} \mid \mathcal{F}(t)\right]$$
(9)

This is an interesting formula. If $R(\cdot)$ is a random process, and we are at time t, we do do not know what R will be exactly after time t. But we do the market tells us what all zero-coupon bond prices are. Any model we create for R must be consistent with (in quant lingo, must be calibrated to) the zero-coupon bond prices via (9).

2.2 Forward prices

Suppose at time t, where t < T, Alice contracts to buy a unit of an asset from Bob at price F at time T. This is called a forward contract. No money changes hands at time t. Let S(u) denote the price of the asset as a function of time u. From Alice's perspective she is getting an option that pays off S(T) - F, because she is purchasing something worth S(T) dollars for F dollars at time T. The value of this option at t is $D^{-1}(t)\tilde{E}[D(T)(S(T) - F) \mid \mathcal{F}(t)] = S(t) - FB(t,T)$; remember, D(t)S(t) is a martingale with respect to $\tilde{\mathbf{P}}$! If she is paying or receiving no money for the contract at time t this value should be zero. Hence

$$F = \frac{S(t)}{B(t,T)}$$

is the fair price for this contract. It is called the *T*-forward price and denoted by $For_S(t,T)$. Really, it is the price of S(t) obtained using B(t,T) as a numéraire.

A trivial but important observation is that the forward price and the market price concur at time T:

$$\operatorname{For}_{S}(T,T) = \frac{S(T)}{B(T,T)} = S(T).$$
(10)

2.3 The risk-neutral measure associated with the zero-coupon bond

Under the domestic risk neutral measure \tilde{P} , $D_t B(t,T)$ is a martingale. Therefore, B(t,T) can be used as a numéraire. Indeed, the risk-neutral measure corresponding to numéraire B(t,T), according to Theorem 3 of Lecture 9, is

$$\widetilde{\mathbf{P}}^{T}(A) = \widetilde{E}[\mathbf{1}_{A} \frac{D(T)B(T,T)}{B(0,T)}] = \frac{1}{B(0,T)} \widetilde{E}[\mathbf{1}_{A}D(T)]$$

We will call P^T , following Shreve (Definition 9.4.1), the *T*-forward measure.

Consider the special case in which the filtration in the risk neutral market is generated by a single Brownian motion \widetilde{W} . Then in this case we know from Theorem 9.1 of Shreve that there is a process $\nu_T(u)$ such that

$$\frac{D(T)}{B(0,T)} = e^{\int_0^T \nu_T(u) \, d\widetilde{W}(u) - \frac{1}{2} \int_0^T \nu_T^2(u) \, du}$$

and that $\widetilde{W}^{T}(t) = \widetilde{W}(t) - \int_{0}^{t} \nu_{t}(u) du$ is a Brownian motion under $\widetilde{\mathbf{P}}^{T}$. (In Shreve, 9.4.2, the notation $-\sigma^{*}(t,T)$ stands for our $\nu_{T}(t)$.

2.4 Pricing under the T-forward measure

2.4.1 Pricing under the domestic risk neutral measure with random interest rate

Suppose the interest rate is R_t , an adapted process. Then the risk neutral price V_t of a Euro style financial product that pays V_T at time T is

$$V_t = \tilde{E}\left(e^{-\int_t^T R_u du} V_T \middle| \mathcal{F}_t\right).$$

Since all we know about R_t is that it is an adpated process, we cannot go further with this pricing formula, unless we make some assumption on R_t (which is about modeling the interest rate, the topic of next Chapter). This is certainly a complex topic. Moreover, even if we have a model for R_t , it doesn't mean the pricing formula will be simple, if $\int_t^T R_u du$ has non zero correlation with V_T , for example. However, a nice observation here is that we do not have to compute this equation under \tilde{E} . Indeed, recall from the section 5.2 result, we have:

$$V_t^T = \tilde{E}^T \Big(V_T^T \Big| \mathcal{F}_t \Big).$$

where $V_t^T := \frac{V_t}{B(t,T)}$ is the price of the product denoted in the unit of zero-coupon bond. Note that since B(T,T) = 1, we have $V_T^T = V_T$.

The nice thing about the pricing formula under \tilde{P}^T is that it is only a conditional expectation of the terminal value, not involving other quantities like the interest rate (this is not a pure gain, since the interest rate was absorbed into \tilde{E}^T). However, this suggests a new approach to the entire problem: we may directly model the assets under \tilde{P}^T , rather than under domestic measure \tilde{P} . Note that if we model the asset under \tilde{P}^T , then the unit of denomination (or the numéraire) is the price of zero coupon bond B(t,T). In particular, if our objective is to model the stock price S_t (under \tilde{P}) then under \tilde{P}^T , we model

$$S_t^T := \frac{S_t}{B(t,T)} = For_S(t,T).$$

Pricing a call option on S(t) under the domestic risk neutral measure is equivalent to pricing a call option on the forward price $For_S(t, T)$ under the T-forward measure. The advantage here is again about modeling. If we model under \tilde{P} then necessarily we need to involve the model of R_t and need to know how to handle the expectation $\tilde{E}\left(e^{-\int_t^T R_u du} V_T | \mathcal{F}_t\right)$. If we model under \tilde{P}^T then we only need to model the forward price of S_t (which potentially maybe easier to calibrate to market parameters than modeling R_t) and then the expectation $\tilde{E}^T\left(V_T^T | \mathcal{F}_t\right)$ is straight forward. The detailed computation is done in the following section.

2.4.2 Pricing a Call option under the T-forward measure

Here one assumes that the forward price of asset S, is given by the simple formula

$$d\operatorname{For}_S(t,T) = \sigma \operatorname{For}_S(t,T) d\overline{W}^T(t), \quad t \le T.$$

The point is that this is the Black-Scholes price model with r = 0, and if one looked at S(t) under the original risk-neutral measure, it would not follow a Black-Scholes model with constant volatility. However it is possible to explicitly price a call. Indeed, let $C(T - t, x, K, r, \sigma)$ denote the Black-Scholes price of a European call when the price is x, the risk-free interest rate is r and the volatility is σ . Let V(t) be the dollar price of the call. Then its forward price is $V^T(t) = V(t)/B(t,T)$. But, recalling from (10) that $\operatorname{For}_S(T,T) = S(T)$, we know from risk-neutral pricing that

$$V^{T}(t) = \tilde{E}^{T} \left[\frac{(S(T) - K)^{+}}{B(T, T)} \middle| \mathcal{F}(t) \right] = \tilde{E}^{T} \left[(\operatorname{For}_{S}(T, T) - K)^{+} \middle| \mathcal{F}(t) \right]$$
$$= \tilde{E}^{T} \left[(\operatorname{For}_{S}(T, T) - K)^{+} \middle| \operatorname{For}_{S}(t, T) \right].$$

But since $\operatorname{For}_{S}(t,T)$ follows the Black-Scholes price model with r = 0 and volatility σ ,

$$V^{T}(t) = C(T - t, \operatorname{For}_{S}(t, T), K, 0, \sigma).$$

Hence,

$$V(t) = B(t,T)C(T-t, \operatorname{For}_{S}(t,T), K, 0, \sigma).$$

By substitution into the explicit formula for C (given above on page 2),

$$V(t) = B(t,T) \operatorname{For}_{S}(t,T) N\left(\frac{\ln(\frac{\operatorname{For}_{S}(t,T)}{K}) + \frac{\sigma^{2}}{2}(T-t)}{\sigma\sqrt{T-t}}\right) - KB(t,T) N\left(\frac{\ln(\frac{\operatorname{For}_{S}(t,T)}{K}) - \frac{\sigma^{2}}{2}(T-t)}{\sigma\sqrt{T-t}}\right)$$

This is essentially formula (9.4.9) in Shreve.

Clearly, this procedure could be applied to other cases where explicit pricing formulae are known for the Black-Scholes price model.