Change of numéraire (Cont)

Math 622
March 31, 2014

1 The exchange rate

Recall the exchange rate model. There is asset price $S(t)$, foreign exchange rate $Q(t)$, domestic money market rate $R(t)$ and foreign money market rate $R^{f}(t)$. Recall

$$
\begin{equation*}
N^{f}(t)=\exp \left\{\int_{0}^{t} R^{f}(u) d u\right\} Q(t) \tag{1}
\end{equation*}
$$

is the dollar value of one unit of the foreign money market account. The risk-neutral model when prices are in dollars is

$$
\begin{align*}
d S(t) & =R(t) S(t) d t+\sigma_{1}(t) S(t) d \widetilde{W}_{1}(t) \\
d N^{f}(t) & =R(t) N^{f}(t) d t+N^{f}(t) \sigma_{2}(t)\left[\rho(t) d \widetilde{W}_{1}(t)+\sqrt{1-\rho^{2}(t)} d \widetilde{W}_{2}(t)\right] \tag{2}
\end{align*}
$$

The risk-neutral measure $\widetilde{\mathbf{P}}^{\left(N^{f}\right)}$ when prices are denominated using N^{f} as numéraire is given in Shreve, page 386, equation (9.3.17) and in the previous set of lecture notes. Here, we make some remarks concerning the exchange rate process $Q(t)$.

1.1 The exchange rate under the domestic risk-neutral measure

It follows from equations (1), (2) that

$$
\begin{equation*}
d Q(t)=\left[R(t)-R_{f}(t)\right] Q(t) d t+Q(t) \sigma_{2}(t)\left[\rho(t) d \widetilde{W}_{1}(t)+\sqrt{1-\rho^{2}(t)} d \widetilde{W}_{2}(t)\right] \tag{3}
\end{equation*}
$$

When dealing with Q alone it is convenient to write this in a simpler form. Define

$$
\widetilde{W}_{3}(t)=\int_{0}^{t}\left[\rho(t) d \widetilde{W}_{1}(t)+\sqrt{1-\rho^{2}(t)} d \widetilde{W}_{2}(t)\right] .
$$

Observe that

$$
\begin{aligned}
{\left[d \widetilde{W}_{3}(t)\right]^{2} } & =\left[\rho(t) d \widetilde{W}_{1}(t)+\sqrt{1-\rho^{2}(t)} d \widetilde{W}_{2}(t)\right]^{2} \\
& =\rho^{2}(t) d t+\left(1-\rho^{2}(t)\right) d t=d t
\end{aligned}
$$

Then by Itô's rule,

$$
\widetilde{W}_{3}^{2}(t)=\int_{0}^{t} \widetilde{W}_{3}(u)\left[\rho(t) d \widetilde{W}_{1}(t)+\sqrt{1-\rho^{2}(t)} d \widetilde{W}_{2}(t)\right]+t
$$

Hence $\widetilde{W}_{3}^{2}(t)-t$ is a martingale. $\widetilde{W}_{3}(t)$ is also a continuous martingale starting at 0 , and so Lévy's theorem implies that $\widetilde{W}_{3}(t)$ is itself a Brownian motion. Using \widetilde{W}_{3},

$$
\begin{equation*}
d Q(t)=\left[R(t)-R_{f}(t)\right] Q(t) d t+\sigma_{2}(t) Q(t) d \widetilde{W}_{3}(t) \tag{4}
\end{equation*}
$$

Remark: The foreign exchange rate behaves exactly like a risky asset that pays dividents at rate $R^{f}(t)$. Equation (4) is the same as equation (5.5.6) in Shreve for a dividend-paying asset if $A(t)$ in that equation is replaced by $R^{f}(t)$.

1.2 Black-Scholes formula for a Call option on the exchange rate

Let $\sigma_{2}(t)=\sigma_{2}$ be constant, and also let $R(t)=r$ and $R^{f}(t)=r^{f}$ be constant. Then equation (4) becomes

$$
\begin{equation*}
d Q(t)=\left[r-r^{f}\right] Q(t) d t+\sigma_{2} Q(t) d \widetilde{W}_{3}(t) \tag{5}
\end{equation*}
$$

The solution to this equation is

$$
\begin{equation*}
Q(t)=Q(0) \exp \left\{\sigma_{2} \widetilde{W}_{3}(t)+\left(r-r^{f}-\frac{1}{2} \sigma^{2}\right) t\right\} \tag{6}
\end{equation*}
$$

We can look at $Q(t)$ (from a computational point of view) as the Black-Scholes price of an asset following the geometric Brownian motion model, when the volatility is σ_{2} and the risk free rate is $r^{f}-r$.

The fact that $Q(t)$ is a classical Black-Scholes price gives immediate formulas for options on the exchange rate in the constant coefficient case, which we will develop below.

Suppose that the risk free rate is r and under \tilde{P}, a stock S_{t} has dynamics:

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d \tilde{W}_{t}
$$

Let $C(T-t, x, K, r, \sigma)$ the price of at time t of a European call on S with strike K, conditioned on $S_{t}=x$. That is

$$
C(T-t, x, K, r, \sigma)=\tilde{E}\left(e^{-r(T-t)}\left(S_{T}-K\right)^{+} \mid S_{t}=x\right)
$$

Then the Black-Scholes formula for $C(T-t, x, K, r, \sigma)$ is

$$
\begin{aligned}
C(T-t, x, K, r, \sigma)= & e^{-r(T-t)} \tilde{E}\left[\left(x e^{\sigma \widetilde{W}(T-t))+\left(r-\sigma^{2} / 2\right)(T-t)}-K\right)^{+}\right] \\
= & x N\left(\frac{\ln (x / K)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right) \\
& \quad-K e^{-r(T-t)} N\left(\frac{\ln (x / K)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right)
\end{aligned}
$$

Consider now a European call option on $Q(T)$ at strike K, for the model of (6). This can also be looked at as a call option with strike K on a unit of foreign currency, quoted in domestic currency.

According to risk-neutral pricing, the value of this option at time t is

$$
\begin{aligned}
V(t) & =e^{-r(T-t)} \tilde{E}\left[(Q(T)-K)^{+} \mid \mathcal{F}(t)\right] \\
& =e^{-r^{f} t} e^{-\left(r-r^{f}\right)(T-t)} \tilde{E}\left[(Q(T)-K)^{+} \mid Q(t)\right] .
\end{aligned}
$$

But evaluating $e^{-\left(r-r^{f}\right)(T-t)} \tilde{E}\left[(Q(T)-K)^{+} \mid Q(t)\right]$ is exactly the same as evaluating the price of a European call when the risk free rate is $r-r^{f}$ and the volatility is σ_{2}. Therefore,

$$
V(t)=e^{-r^{f} t} C\left(T-t, Q(t), K, r-r^{f}, \sigma_{2}\right)
$$

This is called the Garman-Kohlhagen formula. You can also recover this formula from the formula (5.5.12) in Shreve for the price of a call on dividend-paying asset. Just replace a in this formula by r^{f}.

1.3 The exchange rate from the foreign currency viewpoint

Starting with the model (1)-(2), suppose we use the foreign currency money market $N^{f}(t)$ as the numéraire. In the previous lecture we found that

$$
\widetilde{W}^{\left(N^{f}\right)}(t)=\left(\widetilde{W}_{1}(t)-\int_{0}^{t} \sigma_{2}(u) \rho(u) d u, \widetilde{W}_{2}(t)-\int_{0}^{t} \sigma_{2}(u) \sqrt{1-\rho^{2}(u)} d u\right)
$$

is a Brownian motion under $\widetilde{\mathbf{P}}^{\left(N^{f}\right)}$ and we showed

$$
d S^{\left(N^{f}\right)}(t)=S^{\left(N^{f}\right)}(t)\left[\left(\sigma_{1}(t)-\sigma_{2}(u) \rho(u)\right) d \widetilde{W}_{1}^{\left(N^{f}\right)}(t)-\sigma_{2}(t) \sqrt{1-\rho^{2}(t)} d \widetilde{W}_{2}^{\left(N^{f}\right)}(t)\right]
$$

To completely describe the model from the viewpoint of the foreign currency we should also look at the dollar to foreign currency exchange rate $1 / Q(t)$, which is the value of one dollar in units of the foreign currency. The equation for this should have a form symmetrical to the equation (5) for $Q(t)$ when units are in dollars. Indeed,
$d\left[\frac{1}{Q(t)}\right]=\left[R^{f}(t)-R(t)\right] \frac{1}{Q(t)} d t-\sigma_{2}(t) \frac{1}{Q(t)}\left[\rho(u) d \widetilde{W}_{1}^{\left(N^{f}\right)}(t)+\sqrt{1-\rho^{2}(t)} d \widetilde{W}_{2}^{\left(N^{f}\right)}(t)\right]$.

This may be verified from Itô's rule, but one can see why it must be correct by the following reasoning. From the perspective of numéraire $N^{f}, R^{f}(t)$ is the domestic risk free rate and $R(t)$ is the domestic rate, so, where $R(t)-R^{f}(t)$ appears in (4), $R^{f}(t)-R(t)$ appears in (7). The volatility terms are essentially the same because the same stochastic fluctuation is obviously driving both $Q(t)$ and $1 / Q(t)$. To explain why σ_{2} appears in (4) but $-\sigma_{2}$ appears in (7) just note that $1 / Q(t)$ goes down when Q goes up and vice-versa.

Concerning this topic, the student should read section 9.3.4 on Siegel's paradox (which is not really a paradox, but arises from a misunderstanding of the correct numéraire to use in interpreting a model.)

2 Zero coupon bonds as numéraire

In this section we assume given a risk-neutral model with a stochastic interest rate process $R(t), t \geq 0$.

2.1 Zero-coupon bonds

Bonds are financial instruments that promise fixed payoffs. Most bonds provide periodic payments called coupons and then a final payment consisting of a coupon and a lump sum called the principal or face value. A zero-coupon bond pays out only at the terminal time. We let $B(t, T)$ denote the price at time $t \leq T$ of a zero-coupon bond that pays $\$ 1$ at time T.

Given a risk-neutral model defined by a probability measure $\widetilde{\mathbf{P}}$, the no-arbitrage principle demands that $D(t) B(t, T)$ be a martingale in t up to time T. Since $B(T, T)=$ 1 , it follows that

$$
\begin{equation*}
B(t, T)=\frac{\tilde{E}[D(T) B(T, T) \mid \mathcal{F}(t)]}{D(t)}=\frac{\tilde{E}[D(T) \mid \mathcal{F}(t)]}{D(t)}=\frac{\tilde{E}\left[e^{-\int_{0}^{T} R(u) d u} \mid \mathcal{F}(t)\right]}{e^{\int_{0}^{t} R(u) d u}} \tag{8}
\end{equation*}
$$

Hence,

$$
B(t, T)=\tilde{E}\left[\begin{array}{l|l}
e^{-\int_{t}^{T} R(u) d u} & \mathcal{F}(t) \tag{9}
\end{array}\right]
$$

This is an interesting formula. If $R(\cdot)$ is a random process, and we are at time t, we do do not know what R will be exactly after time t. But we do the market tells us what all zero-coupon bond prices are. Any model we create for R must be consistent with (in quant lingo, must be calibrated to) the zero-coupon bond prices via (9).

2.2 Forward prices

Suppose at time t, where $t<T$, Alice contracts to buy a unit of an asset from Bob at price F at time T. This is called a forward contract. No money changes hands at time t. Let $S(u)$ denote the price of the asset as a function of time u. From Alice's perspective she is getting an option that pays off $S(T)-F$, because she is purchasing something worth $S(T)$ dollars for F dollars at time T. The value of this option at t is $D^{-1}(t) \tilde{E}[D(T)(S(T)-F) \mid \mathcal{F}(t)]=S(t)-F B(t, T)$; remember, $D(t) S(t)$ is a martingale with respect to $\widetilde{\mathbf{P}}$! If she is paying or receiving no money for the contract at time t this value should be zero. Hence

$$
F=\frac{S(t)}{B(t, T)}
$$

is the fair price for this contract. It is called the T-forward price and denoted by For $_{S}(t, T)$. Really, it is the price of $S(t)$ obtained using $B(t, T)$ as a numéraire.

A trivial but important observation is that the forward price and the market price concur at time T :

$$
\begin{equation*}
\operatorname{For}_{S}(T, T)=\frac{S(T)}{B(T, T)}=S(T) . \tag{10}
\end{equation*}
$$

2.3 The risk-neutral measure associated with the zero-coupon bond

Under the domestic risk neutral measure $\tilde{P}, D_{t} B(t, T)$ is a martingale. Therefore, $B(t, T)$ can be used as a numéraire. Indeed, the risk-neutral measure corresponding to numéraire $B(t, T)$, according to Theorem 3 of Lecture 9 , is

$$
\widetilde{\mathbf{P}}^{T}(A)=\tilde{E}\left[\mathbf{1}_{A} \frac{D(T) B(T, T)}{B(0, T)}\right]=\frac{1}{B(0, T)} \tilde{E}\left[\mathbf{1}_{A} D(T)\right]
$$

We will call P^{T}, following Shreve (Definition 9.4.1), the T-forward measure.
Consider the special case in which the filtration in the risk neutral market is generated by a single Brownian motion \widetilde{W}. Then in this case we know from Theorem 9.1 of Shreve that there is a process $\nu_{T}(u)$ such that

$$
\frac{D(T)}{B(0, T)}=e^{\int_{0}^{T} \nu_{T}(u) d \widetilde{W}(u)-\frac{1}{2} \int_{0}^{T} \nu_{T}^{2}(u) d u}
$$

and that $\widetilde{W}^{T}(t)=\widetilde{W}(t)-\int_{0}^{t} \nu_{t}(u) d u$ is a Brownian motion under $\widetilde{\mathbf{P}}^{T}$. (In Shreve, 9.4.2, the notation $-\sigma^{*}(t, T)$ stands for our $\nu_{T}(t)$.

2.4 Pricing under the T-forward measure

2.4.1 Pricing under the domestic risk neutral measure with random interest rate

Suppose the interest rate is R_{t}, an adapted process. Then the risk neutral price V_{t} of a Euro style financial product that pays V_{T} at time T is

$$
V_{t}=\tilde{E}\left(e^{-\int_{t}^{T} R_{u} d u} V_{T} \mid \mathcal{F}_{t}\right)
$$

Since all we know about R_{t} is that it is an adpated process, we cannot go further with this pricing formula, unless we make some assumption on R_{t} (which is about modeling the interest rate, the topic of next Chapter). This is certainly a complex topic. Moreover, even if we have a model for R_{t}, it doesn't mean the pricing formula will be simple, if $\int_{t}^{T} R_{u} d u$ has non zero correlation with V_{T}, for example. However, a nice observation here is that we do not have to compute this equation under \tilde{E}. Indeed, recall from the section 5.2 result, we have:

$$
V_{t}^{T}=\tilde{E}^{T}\left(V_{T}^{T} \mid \mathcal{F}_{t}\right) .
$$

where $V_{t}^{T}:=\frac{V_{t}}{B(t, T)}$ is the price of the product denoted in the unit of zero-coupon bond. Note that since $B(T, T)=1$, we have $V_{T}^{T}=V_{T}$.

The nice thing about the pricing formula under \tilde{P}^{T} is that it is only a conditional expectation of the terminal value, not involving other quantities like the interest rate (this is not a pure gain, since the interest rate was absorbed into \tilde{E}^{T}). However, this suggests a new approach to the entire problem: we may directly model the assets under \tilde{P}^{T}, rather than under domestic measure \tilde{P}. Note that if we model the asset under \tilde{P}^{T}, then the unit of denomination (or the numéraire) is the price of zero coupon bond $B(t, T)$. In particular, if our objective is to model the stock price S_{t} (under \tilde{P}) then under \tilde{P}^{T}, we model

$$
S_{t}^{T}:=\frac{S_{t}}{B(t, T)}=\operatorname{For}_{S}(t, T)
$$

Pricing a call option on $S(t)$ under the domestic risk neutral measure is equivalent to pricing a call option on the forward price $\operatorname{For}_{S}(t, T)$ under the T-forward measure. The advantage here is again about modeling. If we model under \tilde{P} then necessarily we need to involve the model of R_{t} and need to know how to handle the expectation $\tilde{E}\left(e^{-\int_{t}^{T} R_{u} d u} V_{T} \mid \mathcal{F}_{t}\right)$. If we model under \tilde{P}^{T} then we only need to model the forward price of S_{t} (which potentially maybe easier to calibrate to market parameters than modeling R_{t}) and then the expectation $\tilde{E}^{T}\left(V_{T}^{T} \mid \mathcal{F}_{t}\right)$ is straight forward. The detailed computation is done in the following section.

2.4.2 Pricing a Call option under the T-forward measure

Here one assumes that the forward price of asset S, is given by the simple formula

$$
d \operatorname{For}_{S}(t, T)=\sigma \operatorname{For}_{S}(t, T) d \widetilde{W}^{T}(t), \quad t \leq T
$$

The point is that this is the Black-Scholes price model with $r=0$, and if one looked at $S(t)$ under the original risk-neutral measure, it would not follow a Black-Scholes model with constant volatility. However it is possible to explicitly price a call. Indeed, let $C(T-t, x, K, r, \sigma)$ denote the Black-Scholes price of a European call when the price is x, the risk-free interest rate is r and the volatility is σ. Let $V(t)$ be the dollar price of the call. Then its forward price is $V^{T}(t)=V(t) / B(t, T)$. But, recalling from (10) that $\operatorname{For}_{S}(T, T)=S(T)$, we know from risk-neutral pricing that

$$
\begin{gathered}
V^{T}(t)=\tilde{E}^{T}\left[\left.\frac{(S(T)-K)^{+}}{B(T, T)} \right\rvert\, \mathcal{F}(t)\right]=\tilde{E}^{T}\left[\left(\operatorname{For}_{S}(T, T)-K\right)^{+} \mid \mathcal{F}(t)\right] \\
=\tilde{E}^{T}\left[\left(\operatorname{For}_{S}(T, T)-K\right)^{+} \mid \operatorname{For}_{S}(t, T)\right]
\end{gathered}
$$

But since $\operatorname{For}_{S}(t, T)$ follows the Black-Scholes price model with $r=0$ and volatility σ,

$$
V^{T}(t)=C\left(T-t, \operatorname{For}_{S}(t, T), K, 0, \sigma\right)
$$

Hence,

$$
V(t)=B(t, T) C\left(T-t, \operatorname{For}_{S}(t, T), K, 0, \sigma\right)
$$

By substitution into the explicit formula for C (given above on page 2),

$$
\begin{aligned}
& V(t)=B(t, T) \operatorname{For}_{S}(t, T) N\left(\frac{\ln \left(\frac{\operatorname{For}_{S}(t, T)}{K}\right)+\frac{\sigma^{2}}{2}(T-t)}{\sigma \sqrt{T-t}}\right) \\
&-K B(t, T) N\left(\frac{\ln \left(\frac{\operatorname{For}_{S}(t, T)}{K}\right)-\frac{\sigma^{2}}{2}(T-t)}{\sigma \sqrt{T-t}}\right)
\end{aligned}
$$

This is essentially formula (9.4.9) in Shreve.
Clearly, this procedure could be applied to other cases where explicit pricing formulae are known for the Black-Scholes price model.

