
Change of numéraire (Cont)
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1 The exchange rate

Recall the exchange rate model. There is asset price S(t), foreign exchange rate Q(t),

domestic money market rate R(t) and foreign money market rate Rf (t). Recall

N f (t) = exp{
∫ t

0

Rf (u) du}Q(t) (1)

is the dollar value of one unit of the foreign money market account. The risk-neutral

model when prices are in dollars is

dS(t) = R(t)S(t) dt+ σ1(t)S(t) dW̃1(t)

dN f (t) = R(t)N f (t) dt+N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
(2)

The risk-neutral measure P̃(Nf ) when prices are denominated using N f as numéraire

is given in Shreve, page 386, equation (9.3.17) and in the previous set of lecture notes.

Here, we make some remarks concerning the exchange rate process Q(t).

1.1 The exchange rate under the domestic risk-neutral mea-

sure

It follows from equations (1), (2) that

dQ(t) = [R(t)−Rf (t)]Q(t) dt+Q(t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
(3)

When dealing with Q alone it is convenient to write this in a simpler form. Define

W̃3(t) =

∫ t

0

[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
.
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Observe that

[dW̃3(t)]
2 =

[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]2
= ρ2(t) dt+ (1− ρ2(t)) dt = dt.

Then by Itô’s rule,

W̃ 2
3 (t) =

∫ t

0

W̃3(u)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
+ t.

Hence W̃ 2
3 (t)− t is a martingale. W̃3(t) is also a continuous martingale starting at 0,

and so Lévy’s theorem implies that W̃3(t) is itself a Brownian motion. Using W̃3,

dQ(t) = [R(t)−Rf (t)]Q(t) dt+ σ2(t)Q(t) dW̃3(t). (4)

Remark: The foreign exchange rate behaves exactly like a risky asset that pays

dividents at rate Rf (t). Equation (4) is the same as equation (5.5.6) in Shreve for a

dividend-paying asset if A(t) in that equation is replaced by Rf (t).

1.2 Black-Scholes formula for a Call option on the exchange

rate

Let σ2(t) = σ2 be constant, and also let R(t) = r and Rf (t) = rf be constant. Then

equation (4) becomes

dQ(t) =
[
r − rf

]
Q(t) dt+ σ2Q(t) dW̃3(t). (5)

The solution to this equation is

Q(t) = Q(0) exp{σ2W̃3(t) + (r − rf − 1

2
σ2)t}. (6)

We can look at Q(t) (from a computational point of view) as the Black-Scholes

price of an asset following the geometric Brownian motion model, when the volatility

is σ2 and the risk free rate is rf − r.
The fact that Q(t) is a classical Black-Scholes price gives immediate formulas for

options on the exchange rate in the constant coefficient case, which we will develop

below.

Suppose that the risk free rate is r and under P̃ , a stock St has dynamics:

dSt = rStdt+ σStdW̃t.
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Let C(T − t, x,K, r, σ) the price of at time t of a European call on S with strike

K, conditioned on St = x. That is

C(T − t, x,K, r, σ) = Ẽ
(
e−r(T−t)(ST −K)+

∣∣∣St = x
)
.

Then the Black-Scholes formula for C(T − t, x,K, r, σ) is

C(T − t, x,K, r, σ) = e−r(T−t)Ẽ

[(
xeσW̃ (T−t))+(r−σ2/2)(T−t) −K

)+]
= xN

(
ln(x/K) + (r + σ2

2
)(T − t)

σ
√
T − t

)

−Ke−r(T−t)N

(
ln(x/K) + (r − σ2

2
)(T − t)

σ
√
T − t

)

Consider now a European call option on Q(T ) at strike K, for the model of (6).

This can also be looked at as a call option with strike K on a unit of foreign currency,

quoted in domestic currency.

According to risk-neutral pricing, the value of this option at time t is

V (t) = e−r(T−t)Ẽ
[
(Q(T )−K)+

∣∣ F(t)
]

= e−r
f te−(r−rf )(T−t)Ẽ

[
(Q(T )−K)+

∣∣ Q(t)
]
.

But evaluating e−(r−rf )(T−t)Ẽ
[
(Q(T )−K)+

∣∣ Q(t)
]

is exactly the same as evaluating

the price of a European call when the risk free rate is r − rf and the volatility is σ2.

Therefore,

V (t) = e−r
f tC(T − t, Q(t), K, r − rf , σ2).

This is called the Garman-Kohlhagen formula. You can also recover this formula from

the formula (5.5.12) in Shreve for the price of a call on dividend-paying asset. Just

replace a in this formula by rf .

1.3 The exchange rate from the foreign currency viewpoint

Starting with the model (1)-(2), suppose we use the foreign currency money market

N f (t) as the numéraire. In the previous lecture we found that

W̃ (Nf )(t) = (W̃1(t)−
∫ t

0

σ2(u)ρ(u) du, W̃2(t)−
∫ t

0

σ2(u)
√

1− ρ2(u) du)
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is a Brownian motion under P̃(Nf ) and we showed

dS(Nf )(t) = S(Nf )(t)
[
(σ1(t)− σ2(u)ρ(u)) dW̃

(Nf )
1 (t)− σ2(t)

√
1− ρ2(t) dW̃ (Nf )

2 (t)
]

To completely describe the model from the viewpoint of the foreign currency we

should also look at the dollar to foreign currency exchange rate 1/Q(t), which is the

value of one dollar in units of the foreign currency. The equation for this should have

a form symmetrical to the equation (5) for Q(t) when units are in dollars. Indeed,

d

[
1

Q(t)

]
= [Rf (t)−R(t)]

1

Q(t)
dt−σ2(t)

1

Q(t)

[
ρ(u) dW̃

(Nf )
1 (t) +

√
1− ρ2(t) dW̃ (Nf )

2 (t)
]
.

(7)

This may be verified from Itô’s rule, but one can see why it must be correct by the

following reasoning. From the perspective of numéraire N f , Rf (t) is the domestic

risk free rate and R(t) is the domestic rate, so, where R(t) − Rf (t) appears in (4),

Rf (t)−R(t) appears in (7). The volatility terms are essentially the same because the

same stochastic fluctuation is obviously driving both Q(t) and 1/Q(t). To explain

why σ2 appears in (4) but −σ2 appears in (7) just note that 1/Q(t) goes down when

Q goes up and vice-versa.

Concerning this topic, the student should read section 9.3.4 on Siegel’s paradox

(which is not really a paradox, but arises from a misunderstanding of the correct

numéraire to use in interpreting a model.)

2 Zero coupon bonds as numéraire

In this section we assume given a risk-neutral model with a stochastic interest rate

process R(t), t ≥ 0.

2.1 Zero-coupon bonds

Bonds are financial instruments that promise fixed payoffs. Most bonds provide

periodic payments called coupons and then a final payment consisting of a coupon

and a lump sum called the principal or face value. A zero-coupon bond pays out only

at the terminal time. We let B(t, T ) denote the price at time t ≤ T of a zero-coupon

bond that pays $1 at time T .
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Given a risk-neutral model defined by a probability measure P̃, the no-arbitrage

principle demands thatD(t)B(t, T ) be a martingale in t up to time T . SinceB(T, T ) =

1, it follows that

B(t, T ) =
Ẽ[D(T )B(T, T )

∣∣∣ F(t)]

D(t)
=
Ẽ[D(T )

∣∣∣ F(t)]

D(t)
=
Ẽ
[
e−

∫ T
0 R(u) du

∣∣∣ F(t)
]

e
∫ t
0 R(u) du

. (8)

Hence,

B(t, T ) = Ẽ
[
e−

∫ T
t R(u) du

∣∣∣ F(t)
]

(9)

This is an interesting formula. If R(·) is a random process, and we are at time t, we

do do not know what R will be exactly after time t. But we do the market tells us

what all zero-coupon bond prices are. Any model we create for R must be consistent

with (in quant lingo, must be calibrated to) the zero-coupon bond prices via (9).

2.2 Forward prices

Suppose at time t, where t < T , Alice contracts to buy a unit of an asset from Bob

at price F at time T . This is called a forward contract. No money changes hands at

time t. Let S(u) denote the price of the asset as a function of time u. From Alice’s

perspective she is getting an option that pays off S(T )−F , because she is purchasing

something worth S(T ) dollars for F dollars at time T . The value of this option at

t is D−1(t)Ẽ[D(T )(S(T ) − F )
∣∣∣ F(t)] = S(t) − FB(t, T ); remember, D(t)S(t) is a

martingale with respect to P̃! If she is paying or receiving no money for the contract

at time t this value should be zero. Hence

F =
S(t)

B(t, T )

is the fair price for this contract. It is called the T -forward price and denoted by

ForS(t, T ). Really, it is the price of S(t) obtained using B(t, T ) as a numéraire.

A trivial but important observation is that the forward price and the market price

concur at time T :

ForS(T, T ) =
S(T )

B(T, T )
= S(T ). (10)
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2.3 The risk-neutral measure associated with the zero-coupon

bond

Under the domestic risk neutral measure P̃ , DtB(t, T ) is a martingale. Therefore,

B(t, T ) can be used as a numéraire. Indeed, the risk-neutral measure corresponding

to numéraire B(t, T ), according to Theorem 3 of Lecture 9, is

P̃T (A) = Ẽ[1A
D(T )B(T, T )

B(0, T )
] =

1

B(0, T )
Ẽ[1AD(T )]

We will call P T , following Shreve (Definition 9.4.1), the T-forward measure.

Consider the special case in which the filtration in the risk neutral market is

generated by a single Brownian motion W̃ . Then in this case we know from Theorem

9.1 of Shreve that there is a process νT (u) such that

D(T )

B(0, T )
= e

∫ T
0 νT (u) dW̃ (u)− 1

2

∫ T
0 ν2T (u) du

and that W̃ T (t) = W̃ (t)−
∫ t

0

νt(u) du is a Brownian motion under P̃T . (In Shreve,

9.4.2, the notation −σ∗(t, T ) stands for our νT (t).

2.4 Pricing under the T-forward measure

2.4.1 Pricing under the domestic risk neutral measure with random in-

terest rate

Suppose the interest rate is Rt, an adapted process. Then the risk neutral price Vt of

a Euro style financial product that pays VT at time T is

Vt = Ẽ
(
e−

∫ T
t RuduVT

∣∣∣Ft).
Since all we know about Rt is that it is an adpated process, we cannot go further

with this pricing formula, unless we make some assumption on Rt (which is about

modeling the interest rate, the topic of next Chapter). This is certainly a complex

topic. Moreover, even if we have a model for Rt, it doesn’t mean the pricing formula

will be simple, if
∫ T
t
Rudu has non zero correlation with VT , for example. However,

a nice observation here is that we do not have to compute this equation under Ẽ.

Indeed, recall from the section 5.2 result, we have:

V T
t = ẼT

(
V T
T

∣∣∣Ft).
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where V T
t := Vt

B(t,T )
is the price of the product denoted in the unit of zero-coupon

bond. Note that since B(T, T ) = 1, we have V T
T = VT .

The nice thing about the pricing formula under P̃ T is that it is only a conditional

expectation of the terminal value, not involving other quantities like the interest rate

(this is not a pure gain, since the interest rate was absorbed into ẼT ). However, this

suggests a new approach to the entire problem: we may directly model the assets

under P̃ T , rather than under domestic measure P̃ . Note that if we model the asset

under P̃ T , then the unit of denomination ( or the numéraire) is the price of zero

coupon bond B(t, T ). In particular, if our objective is to model the stock price St

(under P̃ ) then under P̃ T , we model

STt :=
St

B(t, T )
= ForS(t, T ).

Pricing a call option on S(t) under the domestic risk neutral measure is equivalent

to pricing a call option on the forward price ForS(t, T ) under the T-forward measure.

The advantage here is again about modeling. If we model under P̃ then necessarily

we need to involve the model of Rt and need to know how to handle the expectation

Ẽ
(
e−

∫ T
t RuduVT

∣∣∣Ft). If we model under P̃ T then we only need to model the forward

price of St (which potentially maybe easier to calibrate to market parameters than

modeling Rt) and then the expectation ẼT
(
V T
T

∣∣∣Ft) is straight forward. The detailed

computation is done in the following section.

2.4.2 Pricing a Call option under the T-forward measure

Here one assumes that the forward price of asset S, is given by the simple formula

dForS(t, T ) = σForS(t, T ) dW̃ T (t), t ≤ T.

The point is that this is the Black-Scholes price model with r = 0, and if one looked

at S(t) under the original risk-neutral measure, it would not follow a Black-Scholes

model with constant volatility. However it is possible to explicitly price a call. Indeed,

let C(T − t, x,K, r, σ) denote the Black-Scholes price of a European call when the

price is x, the risk-free interest rate is r and the volatility is σ. Let V (t) be the dollar

price of the call. Then its forward price is V T (t) = V (t)/B(t, T ). But, recalling from

(10) that ForS(T, T ) = S(T ), we know from risk-neutral pricing that

V T (t) = ẼT

[
(S(T )−K)+

B(T, T )

∣∣∣ F(t)

]
= ẼT

[
(ForS(T, T )−K)+

∣∣∣ F(t)
]

= ẼT
[
(ForS(T, T )−K)+

∣∣∣ ForS(t, T )
]
.
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But since ForS(t, T ) follows the Black-Scholes price model with r = 0 and volatility

σ,

V T (t) = C(T − t,ForS(t, T ), K, 0, σ).

Hence,

V (t) = B(t, T )C(T − t,ForS(t, T ), K, 0, σ).

By substitution into the explicit formula for C (given above on page 2),

V (t) = B(t, T )ForS(t, T )N

(
ln(ForS(t,T )

K
) + σ2

2
(T − t)

σ
√
T − t

)

−KB(t, T )N

(
ln(ForS(t,T )

K
)− σ2

2
(T − t)

σ
√
T − t

)

This is essentially formula (9.4.9) in Shreve.

Clearly, this procedure could be applied to other cases where explicit pricing

formulae are known for the Black-Scholes price model.
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